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The Motion of a Bead Sliding on a Wire in Fractional Sense
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In this study, we consider the motion of a bead sliding on a wire which is bent into a parabola form. We first
introduce the classical Lagrangian from the system model under consideration and obtain the classical Euler–
Lagrange equation of motion. As the second step, we generalize the classical Lagrangian to the fractional form
and derive the fractional Euler–Lagrange equation in terms of the Caputo fractional derivatives. Finally, we
provide numerical solution of the latter equation for some fractional orders and initial conditions. The method we
used is based on a discretization scheme using a Grünwald–Letnikov approximation for the fractional derivatives.
Numerical simulations verify that the proposed approach is efficient and easy to implement.
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1. Introduction
Fractional calculus plays an important rule in des-

cribing complex behaviors of many real life pheno-
mena [1, 2]. It has been demonstrated that the fracti-
onal order representation provides a more realistic be-
havior of complex systems appearing in various fields of
science and engineering [3]. Due to this fact, fractio-
nal calculus has some applications in chemistry [4], bi-
oengineering [5], hydrologic modelling [6], pharmacoki-
netics [7], heat transfer modelling [8], viscoelasticity [9],
etc. In classical mechanics fractional calculus finds a wide
range of applications, specially problems involving La-
grangian and Hamiltonian. The first attempt to study
non-conservative Lagrangian and Hamiltonian mechanics
within fractional calculus was carried by Riewe [10, 11].
Following Riewe’s work, many efforts have been car-
ried out [12–15]. In these works, the system under
consideration is described by the fractional Lagrangian
or Hamiltonian equations, and as a result the fractio-
nal Euler–Lagrange equations (FELEs) or the fractional
Hamilton equations are derived for the considered pro-
blems. The obtained fractional equations cannot be sol-
ved analytically so easily in many cases; therefore we
seek for the numerical schemes used for solving fractio-
nal differential equations (FDEs). These methods include
the Grünwald–Letnikov approximation [2], decomposi-
tion method [16–19], variational iteration method [20],
the Adams–Bashforth–Moulton method [21], etc.

Within the environment, the analysis of the motion of
particles on different surfaces has become a strong topic
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to be considered. Some examples of these phenomena
can be found in centrifugation, centrifugal filters and in-
dustrial hopper. The surface of motion can take many
shapes like circular, conical or parabolic. The particle
may also be considered as a bead, dust, bug and so on.
In this study, we consider a bead sliding on a wire, that
is bent into a parabola shape. The analytical and nume-
rical solutions for this motion can be of great usefulness
to analyze the motion of particles on these surfaces (see
for example [22] and the references therein). In addition,
we believe that the numerical solution of the FELE for
the motion of a bead on the wire will reveal new aspects
of the non-locality of this system. From the mathemati-
cal and practical points of view, the FELEs are new, and
their numerical and exact solutions contain more infor-
mation than the corresponding integer ones. Therefore,
by modeling the classical Lagrangian of a bead’s motion
on a wire with fractional derivatives, we have a class of
new solutions. This means that we can easily construct
a real model describing the motion of a bead on the wire
corresponding to the new FELE. This point can be con-
sidered as one of the major advantages of the fractional
calculus versus the classical one, because using the nonlo-
cal fractional differential operators enables us to build a
new real world phenomenon, and we are not violating any
existing laws based on the classical calculus approach.

The outline of this paper is as follows. In Sect. 2 some
preliminaries concerning fractional derivatives are pre-
sented. In Sect. 3, classical and fractional studies have
been carried out for a bead sliding a wire. Section 4 provi-
des numerical solutions of the derived FELE for different
values of fractional order and initial conditions. Finally,
we close the paper by a conclusion in Sect. 5.

(1561)

http://doi.org/10.12693/APhysPolA.131.1561
mailto:drjasad@yahoo.com


1562 D. Baleanu, A. Jajarmi, J.H. Asad, T. Blaszczyk

2. Preliminaries

This section gives briefly some preliminaries concer-
ning the fractional derivatives. There are several de-
finitions for a fractional derivative including Riemann–
Liouville, Weyl, Caputo, Marchaud, and Riesz [1, 2].
Here, we define the left and right fractional derivati-
ves in terms of the Riemann–Liouville and Caputo. Let
g : [a, b] → R be a time dependent function. Below,
we define the fractional derivatives of g(t) used in this
manuscript.

The left Riemann–Liouville fractional derivative
(LRLFD):

aD
α
t g(t) =

1

Γ (n− α)

×
(

d

dt

)n ∫ t

a

(t− τ)n−α−1g(τ)dτ. (1)

The right Riemann–Liouville fractional derivative
(RRLFD):

C
t D

α
b g(t) =

1

Γ (n− α)

×
(
− d

dt

)n ∫ b

t

(t− τ)n−α−1g(τ)dτ. (2)

The left Caputo fractional derivative (LCFD):
C
aD

α
t g(t) =

1

Γ (n− α)

×
∫ t

a

(t− τ)n−α−1

(
d

dτ

)n
g(τ)dτ, (3)

and the right Caputo fractional derivative (RCFD):
C
t D

α
b g(t) =

1

Γ (n− α)

×
∫ b

t

(t− τ)n−α−1

(
− d

dτ

)n
g(τ)dτ, (4)

where Γ (·) is the Euler Gamma function and
n − 1 < α < n is the fractional derivative order.
In addition, when α is an integer, the fractional deriva-
tives of Riemann–Liouville and Caputo both coincide
with the ordinary derivative [1, 2]

aD
n
t g(t) =

C
aD

n
t g(t) = g(n)(t), (5)

C
t D

α
b g(t) =

C
t D

α
b g(t) = (−1)ng(n)(t). (6)

For more details on the fractional derivatives and their
properties, the readers can refer to [1–3].

3. Classical and fractional studies for the motion
of a bead on a wire

We start by describing our physical system. Consider
a wire that is bent into a parabola shape y = Ax2 with
axis vertical in the Earth gravitational field g, a bead of
mass m is sliding without friction along the wire. The
kinetic and potential energy of the bead respectively are

T =
1

2
m(ẋ2 + ẏ2) =

1

2
m[1 + 4A2x2]ẋ2, (7)

V = mgy = mgAx2. (8)
As a result the traditional Lagrangian takes the form

L(x, ẋ, t) = T − V =
1

2
m(1 + 4A2x2)ẋ2 −mgAx2,(9)

and the classical Euler-Lagrange equation (CELE) is
obtained from

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (10)

In view of Eqs. (9),(10) we obtain the CELE
ẍ(m+ 4mA2x2) + ẋ2(4mA2x) + 2mgAx = 0. (11)

In the following, we investigate the fractional form of the
classical Lagrangian (Eq. (9)) which reveals new aspects
of the physical system under consideration

LF =
1

2
m(1 + 4A2x2)

(
C
aD

α
t x
)2 −mgAx2. (12)

Then the FELE of motion is obtained from
∂LF

∂x
+ C
t D

α
b

∂LF

∂CaD
α
t x

+ C
aD

β
t

∂LF

∂Ct D
α
b x

= 0. (13)

As a result of using Eqs. (12),(13) the FELE reads
4mA2x(CaD

α
t x)

2 − 2mgAx+mC
t D

α
b
C
aD

α
t x

+4mA2C
t D

α
b (x

2C
aD

α
t x) = 0. (14)

Notice that as α → 1, the FELE (14) reduces to the
CELE (11).

Below, we are going to obtain the fractional Hamilton
equation of motion. For this purpose, let us introduce
the following generalized momenta

Pα =
∂LF

∂CaD
α
t x

= m(1 + 4A2x2)CaD
α
t x, (15)

Pβ =
∂LF

∂Ct D
α
b x

= 0. (16)

Then the fractional Hamiltonian function can be obtai-
ned from

HF (x, Pα, Pβ , t) = Pα
C
aD

α
t x+ Pβ

C
t D

β
b x− L

F , (17)
which implies that

HF (x, Pα, Pβ , t) =
1

2m(1 + 4A2x2)
P 2
α +mgAx2. (18)

The fractional Hamilton equation of motion reads
∂HF

∂x
= C
t D

α
b Pα + C

aD
α
t Pβ , (19)

which results again the FELE (14). In the next section,
we aim to solve Eq. (14) numerically for some fractional
orders and initial conditions.

4. Numerical solution and simulation results

To develop an approximation scheme for the FELE
(14), first we reformulate Eq. (14) in the following way.
Let us define the new state variable η(t) as η(t) :=
C
aD

α
t x(t). Then Eq. (14) can be rewritten in the form of

the following system of FDEs:
(20)

{
C
aD

α
t x(t) = η(t),

C
t D

α
b η(t) + 4A2C

t D
α
b p(t) = 2gAx(t)− 4A2x(t)η2(t),

where p(t) = x2(t)η(t). Now, we consider a uniform mesh
on [a, b] and label the nodes 0, 1, . . . , N where N is an ar-
bitrary positive integer and hN = b−a

N is the time step
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size. We denote (xi, ηi, pi) as the numerical approxima-
tion of (x(ti), η(ti), p(ti)) where ti = a+ ihN is the time
at node i for 0 ≤ i ≤ N . Using the Grünwald–Letnikov
approximations for the Caputo fractional derivatives in
Eq. (14), we have the following formulae:

C
aD

α
t x(t)

∣∣
t=ti

= h−αN

i∑
j=0

ω
(α)
j xi−j

− 1

Γ (1− α)
x0

(ti − t0)α
, (21)

C
t D

α
b η(t)

∣∣
t=ti

= h−αN

N−i∑
j=0

ω
(α)
j ηi+j

− 1

Γ (1− α)
ηN

(tN − ti)α
, (22)

C
t D

α
b p(t)

∣∣
t=ti

= h−αN

N−i∑
j=0

ω
(α)
j pi+j

− 1

Γ (1− α)
pN

(tN − ti)α
, (23)

where the binomial coefficient ω(α)
j can be calculated by

using the recursive formula ω(α)
j =

(
1− α+1

j

)
ω

(α)
j−1 for

ω
(α)
0 = 1. Substituting Eqs. (21)–(23) into Eq. (20), the

following system of nonlinear algebraic equations is obtai-
ned for the FELE (14):

h−αN
∑i
j=0 ω

(α)
j xi−j − 1

Γ(1−α)
x0

(ti−t0)α = ηi,

h−αN
∑N−i
j=0 ω

(α)
j (ηi+j + 4A2pi+j)

− 1
Γ(1−α)

(ηN+4A2pN )
(tN−ti)α = 2gAxi − 4A2xiη

2
i ,

(24)

where pi = x2
i ηi.

5. Simulation results

In the following simulations we choose m = 2 and
g = 9.81. We also take the initial condition for η(t)
as η(0) = 0. In Figs. 1–3 the graphs of x(t) and y(t) =
Ax2(t) are plotted for α = 0.8, 0.85, 0.9, 0.95, 1 and diffe-
rent values of x(0) and A. In these figures, we also pro-

Fig. 1. Simulation curves of x(t) and y(t) = Ax2(t) for
A = 1, x(0) = 0.2 and different values of α.

vide the solution of CELE (11) in addition to some diffe-
rent solutions of FELE (14) for 0 < α ≤ 1. These figures
indicate that the numerical solution of Eq. (14) exhibits
complex behaviors for different values of α, x(0) and A.
Thus, taking into account the FELEs provides more flex-
ible models which help us to adjust better the dynamical

behaviors of many real world systems. Figures 1-3 also
verify that the numerical solution of FELE (14) approa-
ches the classical case as α approaches 1.

Fig. 2. Simulation curves of x(t) and y(t) = Ax2(t) for
A = 1, x(0) = 1 and different values of α.

Fig. 3. Simulation curves of x(t) and y(t) = Ax2(t) for
A = 20, x(0) = 5 and different values of α.

6. Conclusion

Fractional calculus is an efficient tool to describe com-
plex behaviors of many real world systems. The nume-
rical analysis of FDEs is a very important issue to be
considered by researchers. In this work, we discussed
the motion of a bead on a wire by the fractional calcu-
lus, where we used the fractional derivative in the Ca-
puto sense. We solved the FELE numerically by using a
discretization technique based on a Grünwald–Letnikov
approximation for the fractional derivative. Simulation
results for different values of α, x(0) and A were shown in
Figs. 1–3. In these figures, the classic solution of Eq. (11)
was also plotted in addition to some different solutions
of FELE (14) for 0 < α ≤ 1. From these figures it is
observed that the behaviors of the FELE depend on the
fractional derivative order α. Thus, taking into account
the fractional calculus provides more flexible models de-
monstrating new aspects of real world phenomena. Mo-
reover, the numerical results in fractional sense approach
the classic solution as α approaches 1. Numerical simu-
lations verified that the proposed approach is efficient for
the fractional equation of motion.
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